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The instability of sheared liquid layers 
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A prescribed shear stress applied to the free surface of a thin liquid layer sets up a 
steady shear flow. When the shear flow has a linear velocity, profile, Miles, using 
asymptotic analysis, h d s  critical values R, of the Reynolds number above which 
unstable travelling waves exist. However, Miles omits a term in the normal-stress 
boundary condition. We correct this omission and solve the appropriate Orr-Sommer- 
feld system numerically to obtain the critical conditions. For the case of a zero- 
surface-tension interface, we find that R, = 34.2, as compared with Miles’ value of 
R, = 203. As surface tension increases, R, asymptotes to the inviscid limit developed 
by Miles. The critical Reynolds number, critical wavenumber and critical phase 
speed are presented as functions of a non-dimensional surface tension. We investigate 
the mechanism of the instability through an examination of the disturbance-energy 
equation. When the shear flow has a parabolic velocity profile, we find a long-wave 
instability at small values of the Reynolds number. Numerical methods are used to 
extend these results to larger values of the wavenumber. Examination is made of the 
relation between this long-wave instability and profile curvature. 

1. Introduction 
Consider a liquid layer of infinite horizontal extent bounded below by a rigid plane 

and above by a free surface. If a prescribed shear stress is applied to the free surface, 
then unstable travelling surface waves may exist. These surface waves are driven by 
the bulk flow, having a linear velocity profile, and by the work done during defor- 
mation by the applied shear stress on the free surface. 

Miles (1960) discusses this model as appropriate to nosecone ablation and film cooling 
if ‘the only significant role of the much lighter fluid flowing over the film is to produce 
the mean shear flow ’. He then poses a boundary-value problem and uses linear theory 
to investigate its stability characteristics. However, the problem he poses is actually a 
special limit of the two-fluid model proposed by Feldman (1957), in which the upper 
fluid has small density and viscosity but large kinematic viscosity. Miles errs in 
assuming equivalence between this limiting case of the two-layer model and the single 
layer with applied shear, the latter having an extra term in the normal-stress boundary 
condition. 

Our interest in this model arises from the study of a shear flow in a liquid film driven 
by surface-tension gradients along the free surface. In  certain parametric limits of this 
thermocapillary flow (Smith & Davis 1981), the stability characteristics of this non- 
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isothermal system are determined by the stability of the isothermal film flow described 
above. Hence a full understanding of the isothermal problem is desirable. 

Rather than following Miles and using an asymptotic theory for large Reynolds 
numbers, we solve the appropriate Orr-Sommerfeld system for this problem numeri- 
cally and find the critical Reynolds number R,. Here R is a non-dimensional prescribed 
shear stress based on the mean depth of the layer. For zero surface tension the Miles 
asymptotics yields R, = 203, while our numerical solution of Miles' equations yields 
R, = 78.6. The numerical solution of the corrected Orr-Sommerfeld system for this 
model yields R, = 34.2. We obtain R, for a wide range of surface tensions and discuss 
in detail the stability characteristics of this flow. 

When a viscous liquid fills a two-dimensional slot (having end walls), an imposed 
shear stress on its free surface induces a complicated recirculating flow. Sen & Davis 
(1982) have obtained one such steady flow for thin slots when the motion is induced by 
thermocapillarity. Similar methods show for the present case with large surface 
tension that an approximately parallel flow can exist in the core (away from the end 
walls). Here the free surface is approximately flat and the velocity profile is parabolic. 
We investigate the stability of this core flow and find a long-wave instability a t  small 
values of the Reynolds number. We obtain the stability characteristics for a wide 
range of wavenumbers by solving numerically the appropriate Orr-Sommerfeld 
system. 

The appearance of a long-wave instability for the parabolic velocity profile but not 
for the linear velocity profile leads us to investigate the conditions under which such 
long waves are possible. We relate their appearance to profile curvature and bulk 
pressure gradients. 

Finally, we discuss relevant experiments on sheared liquid layers in terms of the 
present results. 

2. Formulation 
2.1. The mathematical model 

Consider a liquid layer of infinite horizontal extent bounded by a rigid plane a t  z = 0 
and a free surface having mean position a t  z = d. The layer, shown in figure 1, is 
composed of an incompressible Newtonian liquid with constant viscosity p, density p ,  

FIGURE I .  A sketch of the geometry of the liquid layer with the basic-state 
velocity profile and surface disturbances indicated. 
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and surface tension CT. A constant shear stress of magnitude 7 is applied at the free 
surface. There are no body forces. 

The origin of the Cartesian co-ordinate system lies on the rigid plane, and all distances 
in this system are scaled on the liquid depth d. The system is assumed two-dimensional, 
so that all variables are independent of y. The velocity vector v = (u, w), pressure I, 
and time t are referred to scales rd lp ,  7 andp/7 respectively. As a result, there arise the 
following non-dimensional groups : 

R E pd27/p2, S = pda/p2. (2.1 a, b )  

R is the Reynolds number and S is a non-dimensional surface tension. 
In general, the free surface is located at z = 1 + ~(z, t ) ,  where the mean value of 

~ ( x ,  t )  is zero. Thus, we defme the unit normal and tangential vectors to the free surface 
as follows: 

n = (-7m 1 ) / N ,  t = ( 1 , T Z ) / K  (2 .2a ,  b )  
where 

and subscripts denote partial differentiation. On the free surface the normal stress 
balances the surface tension times the curvature and the shear stress is prescribed. 
This can be expressed through the following vector equation: 

crijnj = SR-I K(7) ni + ti on z = 1 + 7. ( 2 . 3 a )  

N = (l+v:p, ( 2 . 2 4  

Here aij is the stress tensor of the liquid, 

where 
(2 .3b )  

( 2 . 3 ~ )  

and K(7)  is the curvature of the free surface, 

~ ( 7 )  = ~ ~ ~ 1 ~ 3 .  ( 2 . 3 d )  

Commas denote spatial differentiation, Sii is the Kronecker delta, and the summation 
convention is used over the range i = 1 , 3 .  The bounding gas is passive with a 
constant pressure taken equal to zero. The kinematic condition on the free surface is 
written as 

w = q t + q z  on z =  1+7. (2 .4 )  

v i = O  on z =  0. (2 .5 )  

On the rigid plane there is no slip, 

The governing bulk equations for the liquid layer are the Navier-Stokes and 

R(2+v,vi , , )  = - I , , ~ + V % ~ ,  ( 2 . 6 ~ )  

= 0.  (2 .6b )  

continuity equations 

2.2. The basic state 

Consistent with the system defined by (2.2)-(2.6) we find the following basic-state 
solution: 

P = @,a) = (2, O ) ,  ( 2 . 7 a )  

r , = o ,  q = o ,  (2.7b, c )  
7-2 
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N = (0 , l )  = nlgx=o, (2.7d) 

T = ( I ,  0) tlqz=,. (2.7e) 

2.3. The linearized stability analysis 

In  a standard way, we apply infinitesimal two-dimensional disturbances to the system 
as follows: 

v = V+V)(X,Z,t), ( 2 . 8 ~ )  

P = F+P’@,  z,t), (2.8b) 

where the free surface is located at 
z = 1 + $(X, t). ( 2 . 8 ~ )  

These are substituted into the governing equations and boundary conditions, and 
we then linearize in the disturbance quantities. It is sufficient to consider only two- 
dimensional disturbances because it is possible to prove Squire’s theorem for this 
problem. 

The linearized system governing two-dimensional disturbances of infinitesimal 
amplitude is as follows: 

v;,i = 0, 

v;= 0 on z =  0, 

( 2 . 9 ~ )  

(2.9b) 

(2 .9~)  

w’=qi+ii& on z =  1, (2.9d) 

We introduce a disturbance stream function $, 

up = $z, w) = -@z,  
and normal modes as follows: 

(2.9e) 

(2.10) 

($@, z, t), P l b ,  z, t), $(x, t ) )  = ($(z) ,  P(Z), $1 exp [ia(z - ct)l, 

c = CR + icJ, 

(2.11) 

(2.12) 

where a > 0. The complex eigenvalue 

consists of the phase speed cR and the growth rate ac, of the disturbances. The forms 
(2.10) and (2.11) are substituted into the system (2.9), where cross differentiation is 
used to eliminate P(z) and the kinematic condition (2.9d) is used to eliminate $. The 
following Orr-Sommerfeld system is obtained: 

(D2-a2)2$ = iaR[(G-c) (D2-a2)$-E”$], ( 2 . 1 3 ~ )  

(2.13b, c) $ ( O )  = $’(O)  = 0, 

$”’( 1) - {iaR[u( 1) - c] + 309) $’( 1) 

(2.134 

] q5( 1) = 0, (2.13e) 
25’( 1) a 2  + -  
[5( 1) - C] R[u( 1) - C] 
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where D = d/dz and primes on U denote dldz. For the basic state under consideration 
U ( 2 )  = 2. 

The formulation of the Orr-Sommerfeld system in Miles (1960) omits the term 
2(dU/dz) (1) 7:: in the normal-stress boundary condition (2.9e), which corresponds to 
the term 2;ii’(l)a2$(l)/[U(l)-c] in (2.13e). Otherwise, his system is identical to 
system (2.13). This omitted term arises from disturbances of the unit normal and 
tangent vectors a t  the free surface which result in contributions to the normal-stress 
perturbation through the basic-state shear stress applied at the interface. 

3. The inviscid problem 
Following Miles (1960), we define a reciprocal Weber number 

T = SIR2, (3.1) 

and examine the limit of system (2.13) as R+oo with T fixed. Using the basic-state 
velocity U ( x )  = z,  we obtain the following inviscid stability problem: 

$“-a2$ = 0, $ ( O )  = 0, (3.2a, b)  

The characteristic equation associated with the system (3.2) is 

( 3 . 2 ~ )  

This result is identical with that obtained by Miles (1960) since the omitted term in 
condition (2.13 e) vanishes as R + 00. 

If instead of T we had fixed the surface tension number S as R + 00, then we would 
have found that 

tanh a l - c =  - 
a (3.4) 

As can be seen from the forms (3.3) and (3.4), the eigenvalue c is real, indicating that 
the growth rates of the disturbances are zero. Thus, a liquid layer set into motion by 
an applied shear stress on its free surface is inviscidly stable. 

It can be shown in the same manner as Howard (1961) that for inviscidly unstable 
modes, i.e. cI > 0, 

For the eigenvalue c defined in the form (3.3) to be a valid approximation of the eigen- 
value of the system (2.13) as R-tco, it  must also satisfy the inequality (3.5). 

Using c c I ,  we can discard the minus sign in the form (3.3). Using c > 0, we find 
that the form (3.3) leads to the result 

0 < C R  < 1. (3.5) 

T < f(a) = a-l coth a - a-2. (3.6) 
The function f ( a )  is a monotonically decreasing function of a with a maximum at 
a = 0 off(0) = f .  If the inequality (3.6) is violated, then the eigenvalue does not lie 
in the interval ( 0 , l )  and no unstable mode exists. Thus we regain Miles’ (1960) result 
that a sufficient condition for stability as R-t 00 is 

T 2 5. (3.7a) 
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FIGURE 2. A comparison of three neutral stability curves for the linear velocity profile ?i for 
S = 0 :  (a) the curve obtained by numerical integration of the Orr-Sommerfeld system (2.13); 
(b) the curve obtained by numerical integration of the Orr-Sommerfeld system used by Miles 
(1960) ; (c) the curve obtained by Miles (1960) using an asymptotic analysis. Curve ( d )  is R = a-'. 
The curves (a)-(c) have the asymptotic behaviour R - a-7 as u + 0. 

a 

In  our notation, this gives the large-Reynolds-number asymptote for stability, 

R G ( 3 4 4 .  (3 .7b)  

4. Method of solution for finite R 
We solve the eigenvalue problem (2.13) numerically using a computer code called 

SUPORT written by Scott & Watts (1975, 1977). This code employs a shooting 
method, and during the integration process uses orthonormalization to maintain a 
linearly independent set of solution vectors. In addition, the secant method is used to 
converge on system eigenvalues. 
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FIGURE 3. Neutral stability curves for the linear velocity profile ;ii for various values of S. 
All curves have the asymptotic behaviour R - a-7 as a +- 0. 

5. Results 
In  figure 2, three neutral curves with S = 0 are compared. The lowest curve repre- 

sents the numerical result for the system (2.13), and has a minimum of R = R, = 34.2 
at a = a, = 2.43. The middle curve represents our numerical result for the eigenvalue 
system as formulated by Miles (1960), and has a minimum of R = R, = 78.6 at 
a = a, = 2.1. Thus we see that the omitted term in the normal-stress boundary 
condition causes an overestimate of R, by about a factor of two. The third curve in 
figure 2 is our redrawing of the S = 0 (i.e. T = 0) curve obtained by Miles (1960) and 
shown in figure 4(a) of his paper. This curve was computed using an asymptotic 
theory, and has a minimum of R = R, = 203 a t  a = a, = 1-6. The difference between 
the critical Reynolds number of 78.6 found by a numerical technique and the value of 
203 found using asymptotic theory can be accounted for by noting that the asymptotic 
theory is valid for (aR)i B 1 and also that the approximation (3.8) of Miles (1960) is 
valid for (aR)g B a2. Both of these conditions are only barely satisfied for R = 78-6 
and a = 2.1. However, as a+O all three curves have the same asymptote R - a-7, 

as derived by Miles (1960). In this limit, the asymptotic approximation becomes more 
accurate and the omitted term in the normal-stress boundary condition, being O(a2), 
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FIGURE 4. Critical Reynolds number for the linear velocity profile ii versus 8. 

The inviscid limit is the line R = (3s)). 
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FIGURE 6. Criticd phase speed for the linear velocity profile Ti versus S. 

R 

FIGURE 7. The disturbance growth rate for the linear velocity profile ;ii versus Reynolds number 
for fixed S = 0 and a = a, = 2.43. The maximum of acI = 0.084 11 occurs at R = 100. 

is negligible compared with the O(a) terms. Note that the case illustrated, S = 0, is a 
worst case for Miles’ results. As S increases, so does R,, and the omitted term becomes 
relatively smaller while the asymptotics become more accurate. 

The eigenvalue problem (2.13) was solved for S between zero and lo*. Neutral 
curves for four values in this range are shown in figure 3. Again, all these curves have 
the form R > a-7 as a+ 0. 

Figure 4 shows the stabilizing effect of surface tension in that Rc increases with S. 
This curve asymptotes to the line R = (3S)6 for large S ,  since as S increases R, becomes 
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FIGURE 8. The corresponding phase speed for the linear velocity profile ii versus Reynolds 

number for fixed S = 0 and a = a, = 2.43. As R -+ 00, cR + 0.5948. 
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FIGURE 9. The disturbance growth rate for the linear velocity profile E versus Reynolds number 
for fixed S = lo4 and a = a, = 1.85. The maximum of acI = 0.021 33 occurs at R = 501. 

large and the inviscid limit (3.7) is approached. Each point on this curve corresponds 
to a different value of a, because a, depends on S as shown in figure 5. As S increases, 
the surface becomes ‘stiffer ’ and therefore more resistive to short-wavelength corru- 
gations. This accounts for the generally decreasing behaviour of a, with increasing s. 

Figure 6 shows that the critical phase speed c,, decreases with increasing S. As 
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FIGURE 10. The corresponding phase speed for the linear velocity profile 5 versus Reynolds 
number for fixed S = lo4 and a = a, = 1.85. As R + co, cB 3 0.4855. 

before, for large S the inviscid limit is approached and the decreasing behaviours of a, 
and cRc with increasing S are connected through the inviscid relation (3.3). 

Often in free-surface problems the application of linear stability theory to experi- 
mental observation becomes difficult because the growth rates of the disturbances are 
so small that the disturbances cannot be sensed until R exceeds R, by an appreciable 
amount. Hence it is of some interest to have estimates of the growth rates for R > R,. 

In our estimates, we fix S and a = a, and allow R to increase through R,. Note that 
a = a, does not necessarily correspond to the wavenumber with maximum growth rate 
for R > R,, even though it does have this property for R = R,. Figure 7 shows ac, 
versus R for S = 0 and a = a, = 2 4 3 .  For R < R,, oxI < 0, then it increases with R, 
vanishes at R,, increases to a maximum of ac; = 0.084 11 at R = 100, and then decreases 
to zero as R-t co. This decrease is consistent with the fact that the shear flow is inviscidly 
stable. Figure 8 gives the corresponding values of the phase speed cR as R is increased. 
Here we note that the limiting value of cR as R+ og is given by (3.4). Figures 9 and 10 
give curves of ac, and cR versus R for S = lo4 and a = a, = 1.85. Here, the maximum 
growth rate is ac, = 0.021 33 a t  R = 501. 

6. Energetics 
The mechanism of instability can be investigated by evaluating the mechanical- 

energy balance for this system. Furthermore, this computation is an independent 
check on the numerical consistency of the linear stability analysis. The energy-balance 
equation is obtained by multiplying the linear disturbance equation (2.9a) by v;, 
integrating over the volume f i  0 < x < 2n/a, 0 < z < 1,  and then using Green's 
theorem and the continuity equation (2.9b). The result is 

( & l a )  _ -  db - 8+ R-I9  - R-IQ, 
dt 
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is the disturbance kinetic energy, 

is the disturbance-energy production due to Reynolds stresses, 

is the disturbance-energy production due to surface-stress working, and 
c 

(6.1 b)  

(6.lc) 

(6.le) 

is the disturbance viscous dissipation. Using the boundary condition (2.9e), Y can be 
transformed into the equivalent form 

Y = 9 s ,  + YNBS + %s, 
where 

is the work done by surface-tension forces, 

is the work done by the applied shear stress, and 

(6.2a) 

(6.2b) 

(6 .2~)  

is the work done by disturbance tangential stresses. Because of the particular form of 
the basic-state solution, i.e. U ( z )  = z, we see that YTS = 0. Thus, we shall disregard this 
term throughout the rest of the discussion. Each term in (6.1 a) is computed using the 
eigenfunctions from linear theory. 

To investigate the case of small surface tension, the terms in the energy balance 
were computed for S = 0, a = a, = 2-43, and for six values of R in the range [30, lOOO], 
which includes the neutral point. Equation ( & l a )  was satisfied by the calculated 
eigenfunctions to five significant figures near R = R,, showing that the computations 
are self-consistent, Figure 11 shows each term in the energy equation over the given 
range of R. Just above R = R,, the disturbances receive energy from the mean flow 
through Reynolds stresses and from stress working at the free surface. Because S = 0, 
the work done by surface-tension forces is identically zero. Thus, Y is composed 
entirely of work done by the applied surface stress. All three terms on the right-hand 
side of (6.1 a) decrease with increasing R, but the surface-stress-working term decreaaes 
faster than the Reynolds-stress term. As R + my db/dt  + 0, which is consistent with 
the inviscid stability of the liquid layer. 

To investigate the case of large surface tension, the terms in the energy balance 
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FIGURE 11. The terms in the energy equation ( 6 . 1 ~ ~ )  for the linear velocity profile B for S = 0 
and u = uc = 2-43. - . - . - , db/d t ;  . . . . . , 8; - - -, R - 1 9 ;  -, R-'9. The vertical scale is 
relative because of the arbitrary normalization of the eigenfunctiona from hear  theory. 
Computed points are connected by straight lines. 

were computed for S = lo4, a = ac = 1.85, and for nine values of R in the range 
[330,5020], which includes the neutral point. Here, (6.1 a) was satisfied by the com- 
puted eigenfunctions to four significant figures near R = R,. Figure 12 shows that 
Reynolds-stress production is the major supplier of energy to the disturbances and 
that it actually increases as R moves through Re. As with the S = 0 case, the dissi- 
pation and the work of the applied surface stress smoothly decrease with R. However, 
the work of surface-tension forces is positive for R < R,, zero when R = R,, becomes 
negative for R > R,, decreases to a minimum at R = 501, and then incremes to zero 
faster than any other term. Note that the work of surface-tension forces on the 
disturbances is the negative of the work required to change the surface area of the free 
surface. For R < R,, the layer is stable and decays from its initial disturbance to zero. 
The free surface decremes its surface area during the decay, thereby feeding the energy 
stored during the initial deflection to the velocity disturbances; thus YsT > 0. At 
R = R,, the disturbance is neutrally stable, and the free surface neither increases nor 
decremes its surface area; so sPsT = 0. For R > Re, the layer is unstable and the 
deflection of the free surface grows, thereby increasing its surface area. The energy for 
this increase in area comes from the disturbances; th-m Y)ST c 0. As R is increased 
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FIGURE 12. The terms in the energy equation ( 6 . 1 ~ )  for the linear velocity profile 3 for S = lo4 
and a = a, = 1.85. - . .- . -, dB/dt ;  . . . . . , 
-, The vertical scale is relative because of the arbitrary normalization of the eigen- 
functions from linear theory. Computed points are connected by straight lines. 
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further, YST/R reaches a minimum and then goes to zero like R-2, whereas YNBS/R 
goes to zero only like R-l. 

For small surface tension, the layer becomes unstable because the rate of decrease 
of the Reynolds-stress production with R is slower than the rate of decrease of dissi- 
pation or surface stress working. However, energy for the instability is provided 
through work done by the applied stress and through Reynold-stress production. 
At larger values of surface tension the increase in Reynolds-stress production is the 
dominant mechanism for instability, while the surface stress working is of smaller 
importance. However, the presence of the free surface is vitally important to the 
overall instability of the system, for without i t  the system represents plane Couette 
flow in a channel, in which case the layer is always stable. In fact, as S +  oc), the free 
surface becomes planar and stress-free and figure 4 shows that R,+m as well; thus 
the layer would always be stable. 

7. Parabolic velocity profiles and long-wave instabilities 
Free-surface flows can sometimes exhibit a long-wave instability at  low Reynolds 

numbers, as shown by Benjamin (1 957) and Yih (1  963) for film flow down an inclined 
plane. We shall investigate the long-wave instability of parallel shear flows driven by 
applied shear stresses; such flows in slots with end walls have parabolic velocity 
profiles. 
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Liquid fills a two-dimensional slot as shown in figure 13. This slot has depth d and 
length I ,  and its aspect ratio is defined as 

A = d / l .  (7 .1)  

The flow field, driven by a constant shear stress on the interface, can be approximated 
asymptotically aa A --f 0. In this case, there is at leading order a core region away from 
the ends composed of a parallel flow with zero mass flux through any vertical plane; 
the fluid turns around in end regions of dimension O(A). The solutions in the two 
regions are connected through asymptotic matching. This method of solution is 
carried out in detail for a thermocapillary shear flow in a thin two-dimensional slot 
by Sen & Davis (1982) .  For the present case we find that the leading-order approxi- 
mation of the flow field in the core region is given by 

ii = &2-$2+O(A), (7 .2a )  

w = O+O(A), (7 .2b )  

( 7 . 2 ~ )  

p = $ x + O ( A ) .  (7 .2d )  

As discussed by Sen & Davis (1982) the approximation (7 .2)  is valid if AS 2 O(A-4). The 
stability of this leading-order approximation of the basic state can be found by em- 
ploying the same linear stability analysis used in § 2.3. We obtain for this leading-order 
approximation the Orr-Sommerfeld system (2.13), with 

- 
11 = 1 + O(A) ,  

ii = $22 - $2. ( 7 .3 )  

U = U ' ( l ) z + ~ i i " ( 1 ) ( 2 2 - 2 z ) .  ( 7 . 4 )  

We consider a long-wavelength disturbance to a flow with the velocity profile 

When U'( 1 )  = 1 and U"( 1 )  = 0, we have the linear velocity profile discussed previously. 
When U'( 1 )  = 1 and ii"( 1) = Q, we have the velocity profile for the core flow in a thin 
two-dimensional slot. We use regular perturbation theory for a -+ 0, R = O( I ) ,  on the 
system (2 .13) ,  and obtain the complex phase speed 

where 
c = c0 + ia[/3R - $BR-l] + O(&), 

/ 3 =  -2 1sco - U"( l )?  (7 .5c)  

B =  a28 = O(1) .  ( 7 . 5 4  

( 7 . 5 a )  

(7 .5b)  co = G'( 1 )  -a"( 1 ) ,  

/ / / / / / / / / / / / / / / / / /  

a 1 """"- 
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FIGURE 14. The computed neutral curves for the parabolic core-flow velocity 
profile ?i for various values of S. 

When p < 0, the system is stable to long waves. When p > 0, the system is unstable 
to long waves, and the critical Reynolds number is given by 

R, = ($/3/3)6, a+0. (7.6) 

c o = l ,  p=o .  (7.7) 

For the linear velocity profile, U'( 1) = 1 and U"( 1)  = 0, and we have 

This velocity profile is, therefore, stable to long waves, consistent with our numerical 
calculations. 

For the parabolic core-flow velocity profile E'( 1) = 1 and Ti"( 1) = 8, and we have 

(7.8) c 0 -  - - I  2 ,  P = & .  
Therefore we have a long-wave instability for this velocity profile, with the neutral 
curve given by 

R, = (?-B)&, a+0. (7.9) 

Figure 14 shows numerically computed results for three values of S (=  For 
small a and 8 = O(1) the computed curves agree with (7.9) to 0(a2) accuracy. 

The difference between the long-wave instability results for the linear velocity 
profile and the parabolic core-flow velocity profile is easily traced to the change in 
sign of the parameter /?. From the definition of p in ( 7 . 5 ~ )  and the observation that 
E" = i?, we can say the following about liquid layers with constant curvature velocity 
profiles: 
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FIGURE 15. A sketch of the result (7.10) for constant-curvature velocity profiles normalized by 
setting Z'(1) = 1. Stable velocity profiles are bounded by the two solid profiles. The dotted 
velocity profiles are unstable. 

(i) the layer will be unstable to long waves if 

?if( 1) 
u"(l) -= 1 ;  (7 .10)  

(ii) unstable long-wavelength disturbances to the layer always travel in the 
direction of decreasing pressure; 

(iii) the phase speed of unstable long-wavelength disturbances is not contained in 
the range of ii. 

The result (7.10) is sketched in figure 15 for velocity profiles normalized by setting 
d( 1) = 1. Only those profiles bounded by the two solid ones are stable. It is interesting 
to note that any velocity profile with a region of return flow will be unstable to long 
waves. 
' 

Given a parabolic velocity profile of the basic state, one might expect a viscous 
instability similar to that in plane Poiseuille flow. For the velocity profile 3 = $(z2 - 22) 
and a redefinition? of the parameter Sin the Orr-Sommerfeld system (2 .13 ) )  we obtain 
the system which governs the instability of flow down an inclined plane. As De Bruin 
(1974) has shown, this problem does have a viscous instability a t  large Reynolds 
numbers. By superimposing a linear velocity profile on this parabolic one we regain 
the core-flow velocity profile (7 .3 ) .  Potter (1966) shows that such a super-position is 
stabilizing for the case of Poiseuille flow in a rigid channel, and that when the maximum 
velocity of the linear component exceeds 0.7 times the maximum velocity of the plane 
Poiseuille component, the flow is always linearly stable. Our calculations also show a 
stabilizing trend when the plane Couette component increases, and we find no viscous 
instability for the core-flow velocity profile (7 .3) .  

- 

8. Discussion and conclusions 
The term in the disturbance normal-stress boundary condition (2 .9e)  omitted by 

Miles (1960) accounts for a reduction of R, by about a factor of two when S = 0. This 
reduction can be explained by examining the surface-stress-working term of the 
mechanical-energy balance. As shown in figure 1 1 ,  when the liquid layer becomes 

t Here S = 2Ra-* cot Po, where Po is the angle of inclination of the rigid plane. 
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unstable for S = 0 the disturbances receive more than half of their energy from work 
done by the applied surface stress. No work is done by surface-tension forces, since 
S = 0. I n  omitting this surface-stress term Miles omits this source of energy. 

If gravity were included in the present model, the only change in the disturbance 
equations would be the addition of the term ( - GR-lq’) Ni on the right-hand side of 
the normal-stress boundary condition (2.9e), where 

G = gd3p2/p2 (8.1) 

and g is the acceleration of gravity. This corresponds to replacing S by S + G c 2  in the 
boundary condition (2.13e). 

In  typical experiments (e.g. Craik 1966; Saric & Marshall 1971) the velocity profile 
is linear, and long-wave instabilities are absent. The depth of the layer is a t  most about 
0.1 em. While the corresponding value of G may be appreciable, the effect of gravity is 
usually small compared with the surface tension as measured by the Bond number 
B, = GS-I = pgd2/a. By making the substitution S + Ga-2-t S, it is seen that gravity 
can be neglectecl altogether when B,,a-2 < 1. For example, in a 0.1 cm layer of water 
S = 72800,G = 9800andB, = 0-13.E”romfigure5,ac = 1.82and~oB,,a;~ = 0.041 < 1. 
The addition of gravity changes the critical Reynolds number from 780 to 800, a 
change of less than 3%. As d decreases, B, will decrease, S will decrease causing a, to 
increase, and so will always be much less than unity. Thus it is reasonable to 
neglect gravity altogether. Note that this neglect always underestimates the critical 
Reynolds number. However, if the velocity profile were parabolic and long-wave 
instabilities were possible, then the quantity Qa-2 would not necessarily be small and 
hence gravity might be important. 

The problem actually solved by Miles models the upper fluid as only producing the 
mean shear flow in the layer, and ignores any other forces exerted by the gas on the 
liquid. Thus he ignores any direct energy transfer from the gas to the disturbances in 
the liquid. The problem solved in the present paper includes the normal-stress pertur- 
bation exerted by the gas on the liquid that is needed to keep the basic state shear 
stress exerted by the gas parallel to the surface of the liquid. As we have shown, this 
additional force lowers the critical Reynolds number significantly a t  small values of 
the parameter S. 

A more general model assumes that the gas exerts both normal and tangential stress 
perturbations on the liquid as a result of surface deformation. Cohen & Hanratty 
(1965) use such a model in their analysis of wave formation on liquid layers. They use 
the work of Benjamin (1959) and Miles (1962) to determine the additional stress 
perturbations of the gas on the liquid and also include the surface-stress term in the 
normal-stress boundary condition that was omitted by Miles (1960). When the 
additional stress perturbations of the gas on the liquid are zero, their Orr-Sommerfeld 
system reduces to  the system (2.13). While their large-Reynolds-number asymptotic 
analysis is in good agreement with their experimental observations, both show that 
the phase speed of the disturbances is larger than the interfacial velocity. They then 
conclude that the instability is a result of energy transfer from the gas to the liquid 
through the normal and tangential stress perturbations of the gas on the liquid. The 
appearance of slow waves, i.e. disturbances whose phase speeds are less than the 
interfacial velocity consistent with the present work, are not observed. 

Craik ( 1  966), however, does observe slow waves a t  very large wavelengths and small 



Instability of sheared liquid layers 205 

Test number 

5 
6 
7 

17 
18 
19 
20 
22 
26 

S 

4310 
4030 
5470 
4650 
4620 
5240 
6860 
5110 
3070 

Rm 
120 
140 
195 
120 
136 
179 
260 
225 
100 

Ro 
255 
250 
275 
261 
261 
270 
300 
270 
228 

TABLE 1. A comparison of the experiments of Saric & Marshall (1971) with the results of our 
linear stability theory. The test number and R,, are from table 3 of Saric & Marshall (1971). The 
parameter S was calculated from their table 3 using the relation S = R2/ W .  Using this value of 
8, R, was obtained from our figure 4. For each test, Saric & Marshall (1971) report that the wave- 
number and phase speed of the disturbance are approximately 0.1 and 0.7 respectively. Our 
calculations show that the wavenumber and phase speed should be 1.84 and 0.34 respectively. 

Reynolds numbers. In  his analysis, he uses the results of Benjamin’s (1959) analysis 
of flow over a rigid wavy boundary for the normal and tangential stress perturbations 
of the gas on the liquid. He then follows the method used by Ben jamin (1957) to obtain 
his long-wave instability criterion. As with Cohen & Hanratty (1965), Craik’s long- 
wave instability receives its energy from the external forces applied on the free surface 
of the liquid by the bounding gas. Without these additional forces the layer is always 
stable to long waves as we have seen. 

In  the experiments of Saric & Marshall (1 971) on supersonic flow over thin liquid 
layers, slow waves are observed at  large Reynolds numbers. It is conjectured that the 
parallel-flow instability mechanism studied by Miles ( 1960) could possibly explain the 
existence of these waves. Table 1 compares their results for slow waves with the calcu- 
lations presented in figures 4, 5 and 6. The experimental flows are unstable a t  values 
of the Reynolds number considerably below those predicted by our linear theory. In  
addition, the wavenumbers are an order of magnitude smaller and the phase speeds 
are twice as large as predicted. In  any such experiment there will always be competing 
instability mechanisms present owing to the stress perturbations of the gas flow on the 
liquid interface. Because of this competition, and the possibility of nonlinear inter- 
actions between the various modes, the observed value of R, can be altered signifi- 
cantly. Thus the difference between the experimental values of R, and our linear 
theory might not be significant. Furthermore, because of errors involved in the 
calculation of the interfacial velocity and the effects mentioned above, the difference 
in the phase speeds may not be significant either. However, the large difference between 
the wavenumbers does suggest that the slow waves observed by Saric & Marshall 
(1971) are not the result of the parallel-flow mechanism studied by Miles (1960). 

It is noted by Saric & Marshall (1971) for R > 100 that there is a definite observable 
change in the behaviour of the interface. Also observed, but not reported, was the 
existence of a very small scale structure superimposed on the long waves. This fin0 
structure could not, be measured at that time, but could be evidence of an instability 
with a x 2, i.e. an instability caused by the parallel-flow mechanism. It was these 
qualitative observations that led to the conjecture of Saric & Marshall (1971) that the 
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parallel-flow mechanism was operating in these experiments. The validity of this 
conjecture can only be determined by further experiment. 

The results obtained in this paper should properly be compared to an experiment in 
which the wave-induced stress perturbations of the gas on the liquid are negligible or 
zero. Such a situation would presumably arise in a thermocapillary shear flow. We 
have shown (Smith & Davis 1981) that for large values of the surface-tension number S 
the stability of an infinite two-dimensional thermocapillary shear flow to two- 
dimensional disturbances is governed by the stability characteristics of the problem 
considered in this paper. Furthermore, for a thermocapillary shear flow in the core 
region of a two-dimensional slot, we find that in the limit of small Prandtl and/or 
large surface Biot number the stability is also governed by the corresponding iso- 
thermal problem. However, experimental results for flows of this type are unavailable 
for comparison at this time. 

The parabolic core flow in thin two-dimensional slots only exists away from the ends 
of the slot. The long-wavelength disturbances near a = 0, found to be unstable in the 
core flow by the perturbation method, will be affected by the presence of the ends. One 
would expect that the ends would stabilize these long waves and that this effect would 
begin when the wavelength of the disturbance was comparable with the length of the 
slot. Thus the results of the long-wave analysis would have to be modified for end 
effects when 

However, the long-wave analysis is valid only for a c 2nA. Only by extending the 
analytic results to larger a by numerical computation as shown in figure 14 can we 
describe instabilities that are negligibly affected by the presence of the end walls. 

a < 2nA. (8.2) 
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